Pillichshammer, Friedrich.
Friedrich Pillichshammer mathématicien autrichien
VIAF ID: 120443202 (Personal)
Permalink: http://viaf.org/viaf/120443202
Preferred Forms
- 100 0 _ ‡a Friedrich Pillichshammer ‡c mathématicien autrichien
-
- 100 1 _ ‡a Pillichshammer, Friedrich
- 100 1 _ ‡a Pillichshammer, Friedrich (sparse)
- 100 1 _ ‡a Pillichshammer, Friedrich
-
-
- 100 1 _ ‡a Pillichshammer, Friedrich
- 100 1 _ ‡a Pillichshammer, Friedrich
-
- 100 1 _ ‡a Pillichshammer, Friedrich
-
-
4xx's: Alternate Name Forms (11)
5xx's: Related Names (5)
- 510 2 _ ‡a Cambridge University Press
- 510 2 _ ‡a Johannes Kepler Universität Linz ‡4 affi ‡4 https://d-nb.info/standards/elementset/gnd#affiliation ‡e Affiliation
- 551 _ _ ‡a Linz ‡4 ortw ‡4 https://d-nb.info/standards/elementset/gnd#placeOfActivity
- 510 2 _ ‡a Springer Science+Business Media
- 510 2 _ ‡a Universität Linz
Works
Title | Sources |
---|---|
Applied Algebra and Number Theory | |
L∞-Approximation in Korobov spaces with exponential weights | |
Digital nets and sequences, 2010: | |
Discrepancy theory | |
Distribution properties of sequences generated by Q-additive functions with respect to Cantor representation of integers | |
Expected discrepancies | |
Exponential tractability of linear weighted tensor product problems in the worst-case setting for arbitrary linear functionals | |
A generalization of NUT digital (0,1)-sequences and best possible lower bounds for star discrepancy | |
Improved upper bounds for the star discrepancy of digital nets in dimension 3 | |
Introduction to quasi-Monte Carlo integration and applications | |
Lattice Rules : Numerical Integration, Approximation, and Discrepancy | |
A lower bound on a quantity related to the quality of polynomial lattices | |
Monte Carlo and Quasi-Monte Carlo Methods : MCQMC 2022, Linz, Austria, July 17–22 | |
On the mean square weighted L2 discrepancy of randomized digital (t, m, s)-nets over Z2 | |
On Weyl products and uniform distribution modulo one | |
The p-adic diaphony of the Halton sequence |